1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205 | // activation functions
#define ann_sigmoid(x) (1.0f / (1.0f + expf(-(x))))
#define ann_gaussian(x) (expf(-(x) * (x)))
#define ann_sin(x) (sinf(x))
#define ann_cos(x) (cosf(x))
#define ann_linear(x) (x)
// derivatives
#define ann_sigmoid_d(x) ((x) * (1.0f - (x)))
#define ann_gaussian_d(x) (-2.0f * (x) * ann_gaussian(x))
#define ann_sin_d(x) (cosf(x))
#define ann_cos_d(x) (-sinf(x))
#define ann_linear_d(x) (1.0f)
int ann_weight_count(int layer_count, int *layer_node_count)
{
int i, s = 0;
for (i = 1; i < layer_count; i++)
s += (layer_node_count[i - 1] + 1) * layer_node_count[i];
return s;
}
int ann_node_count(int layer_count, int *layer_node_count)
{
int i, s = 0;
for (i = 0; i < layer_count; i++)
s += layer_node_count[i];
return s;
}
int ann_node_count_minus_input(int layer_count, int *layer_node_count)
{
int i, s = 0;
for (i = 1; i < layer_count; i++)
s += layer_node_count[i];
return s;
}
void ann_run_layer(float *output, float *input, float *weight, char *node, int output_count, int input_count)
{
int i, j;
if (node) {
for (i = 0; i < output_count; i++) {
float out;
if (node[i] == 0) { // node is off
output[i] = 0;
weight += input_count + 1;
continue;
}
out = weight[0]; // bias
weight++;
for (j = 0; j < input_count; j++) {
out += input[j] * weight[0];
weight++;
}
switch (node[i]) {
default:
case 1: output[i] = ann_sigmoid(out); break;
case 2: output[i] = ann_gaussian(out); break;
case 3: output[i] = ann_sin(out); break;
case 4: output[i] = ann_cos(out); break;
case 5: output[i] = ann_linear(out); break;
}
}
}
else {
for (i = 0; i < output_count; i++) {
float out = weight[0]; // bias
weight++;
for (j = 0; j < input_count; j++) {
out += input[j] * weight[0];
weight++;
}
output[i] = ann_sigmoid(out);
}
}
}
void ann_run(float *value, float *weight, char *node, int layer_count, int *layer_node_count)
{
float *valuep, *layer_input;
int i, layer_input_count;
layer_input = value;
layer_input_count = layer_node_count[0];
valuep = value + layer_input_count;
for (i = 1; i < layer_count; i++) {
ann_run_layer(valuep, layer_input, weight, node, layer_node_count[i], layer_input_count);
layer_input = valuep;
valuep += layer_node_count[i];
weight += (layer_input_count + 1) * layer_node_count[i];
layer_input_count = layer_node_count[i];
if (node) node += layer_node_count[i];
}
}
void ann_node_gradient(char *node, float *gradient, float *input, int input_count, float value, float cost)
{
float delta, err;
int i;
if (node) {
switch (node[0]) {
default:
case 0: delta = 0; break; // node is off
case 1: delta = ann_sigmoid_d(value); break;
case 2: delta = ann_gaussian_d(value); break;
case 3: delta = ann_sin_d(value); break;
case 4: delta = ann_cos_d(value); break;
case 5: delta = ann_linear_d(value); break;
}
}
else {
delta = ann_sigmoid_d(value);
}
err = cost * delta;
gradient[0] = err; // bias
for (i = 0; i < input_count; i++)
gradient[i + 1] = err * input[i];
}
void ann_gradients(float *gradient, float *value, float *desired_output, float *weight, char *node, int layer_count, int *layer_node_count)
{
float *vp, *gp, *wp, *ip;
char *np = NULL;
int node_count, input_count;
int i, j;
// start from output layer data
value += layer_node_count[0];
for (i = 1; i < (layer_count - 1); i++) {
int weight_count = (layer_node_count[i - 1] + 1) * layer_node_count[i];
value += layer_node_count[i];
weight += weight_count;
gradient += weight_count;
if (node) node += layer_node_count[i];
}
// output layer gradient
node_count = layer_node_count[layer_count - 1];
input_count = layer_node_count[layer_count - 2];
vp = value;
gp = gradient;
ip = vp - input_count;
if (node) np = node;
for (j = 0; j < node_count; j++) {
float cost = vp[j] - desired_output[j];
ann_node_gradient(np, gp, ip, input_count, vp[j], cost);
gp += input_count + 1;
if (node) np++;
}
// hidden layers gradient
for (i = (layer_count - 2); i >= 1; i--) {
float *next_layer_weight = weight;
float *next_layer_gradient = gradient;
int k, weight_count, next_node_count = node_count;
node_count = input_count;
input_count = layer_node_count[i - 1];
weight_count = (input_count + 1) * node_count;
vp = (value -= node_count);
gp = (gradient -= weight_count);
ip = vp - input_count;
if (node) np = (node -= node_count);
for (j = 0; j < node_count; j++) {
float *wn = next_layer_weight;
float *gn = next_layer_gradient;
float cost = 0;
// cost from next nodes errors
for (k = 0; k < next_node_count; k++) {
cost += gn[0] * wn[1 + j];
wn += node_count + 1;
gn += node_count + 1;
}
ann_node_gradient(np, gp, ip, input_count, vp[j], cost);
gp += input_count + 1;
if (node) np++;
}
weight -= weight_count;
}
}
|